Analisis Motor Bakar

Authors

Hasan Maksum, Universitas Negeri Padang; Wawan Purwanto, Universitas Negeri Padang; Wagino, Universitas Negeri Padang; Rahmat Desman Koto, Universitas Negeri Padang; Defelinu Harefa, Universitas Negeri Padang; Desman Telaumbanua, Universitas Negeri Padang; Sabar Jaya Zalukhu, Universitas Negeri Padang; Exaudi Ziliwu, Universitas Negeri Padang

Synopsis

Motor bakar adalah mesin vital yang menggerakan kehidupan modern, dari kendaraan bermotor hingga mesin industri. Buku “Analisis Motor Bakar” menawarkan wawasan mendalam tentag teknologi yang menggerakan dunia kita. Disusun secara sistematis, buku ini membawa pembaca melalui berbagai aspek motor bakar, mulai dari pengenalan dasa hingga analisis teknis yang kompleks.
Apa yang ada dalam buku ini?

  1. Pengenalan komprehensif : memahami sejarah, jenis-jenis, dan prinsip kerja motor bakar, memberikan dasar yang kuat bagipembaca untuk mempelajari lebih lanjut.
  2. Proses pembakaran dan Sistem Bahan Bakar : Eksplorasi mendetail mengenai langkah-langkah pembakaran, sistem injeksi bahan bakar, dan bagaimana efisiensi pengguanaan bahan bakar dapat ditingkatkan.
  3. Sistem Pembakaran dan Pemeliharaan : Cara mengoptimalkan peforma mesin melalui sistem pembakaran yang efisien dan pemeliharaan rutin.
    Peforma dan Aplikasi Industri : Panduan praktis untuk meningkatkan peforma mesin dan studi kasus motor bakar dalam berbagai industri seperti otomotif, pertanian, dan maritim.

Dikembangkan oleh tim ahli yang berpengalaman, buku ini adalah sumber daya berharga bagi insinyur, mahasiswa, dan praktisi industri yang ingin memperdalam pengetahuan pengetahuan mereka tentang teknologi motor nakar dan aplikasinya dalam dunia nyata. Dengan penjelasan yang mudah dipahami dan ilustrasi yang mendukung, “Analisis Motor Bakar” adalah panduan lengkap menuju efisiensi energi dan inovasi teknologi

References

Abhilash, P., & Nanda kumar, R. (2021). Performance analysis of two stroke petrol engine on basis of variation in carburetor main jet diameter. Materials Today: Proceedings, 39, 165–175. https://doi.org/10.1016/j.matpr.2020.06.481

Agarwal, A. K. (2007). Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 33(3), 233–271. https://doi.org/10.1016/j.pecs.2006.08.003

Agrawal, S. K. (2006). Internal Combustion Engines. New Age International.

Almanda, I., & Andrizal, A. (2021). Pengaruh Penggunaan Variasi Busi dan Bahan Bakar Pada Sepeda Motor Matic 110 CC Terhadap Torsi dan Daya. AEEJ : Journal of Automotive Engineering and Vocational Education, 2(2), 113–122. https://doi.org/10.24036/aeej.v2i2.67

Alturki, W. (2017). Four-stroke and two-stroke marine engines comparison and application. International Journal of Engineering Research and Applications, 7(4 Part 3), 49–56.

Alwi, E., Harahap, M., Fernandez, D., & Milana, M. (2022). Pengembangan Modul Pembelajaran Mata Pelajaran Pemeliharaan Mesin Kendaraan Ringan Kelas XI TKR SMK Negeri 2 Padang Sidempuan. Ensiklopedia Education Review, 4(3), 231–236. https://doi.org/10.33559/eer.v4i3.1542

Amador Diaz, G. J., Gómez Montoya, J. P., Corredor Martinez, L. A., Olsen, D. B., & Salazar Navarro, A. (2019). Influence of engine operating conditions on combustion parameters in a spark ignited internal combustion engine fueled with blends of methane and hydrogen. Energy Conversion and Management, 181, 414–424. https://doi.org/10.1016/j.enconman.2018.12.026

Arefin, M. A., Nabi, M. N., Akram, M. W., Islam, M. T., & Chowdhury, M. W. (2020). A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses. Energies, 13(22), Article 22. https://doi.org/10.3390/en13226127

Asroful, A., Defa, A. N., & Hairul, B. M. (2024). Pengaruh Bentuk Permukaan Piston Rata (Flat) Dan Piston Cembung (Dome) Terhadap Performa Dan Emisi Gas Buang Pada Mesin Sport 200cc. Journal of Mechanical Engineering, 1(1), 76–90. https://doi.org/10.47134/jme.v1i1.2193

Astanei, D., Faubert, F., Pellerin, S., Hnatiuc, B., & Wartel, M. (2018). A New Spark Plug to Improve the Performances of Combustion Engines: Study and Analysis of Unburned Exhaust Gases. Plasma Chemistry and Plasma Processing, 38(5), 1115–1132. https://doi.org/10.1007/s11090-018-9903-5

Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2010). High quality biodiesel and its diesel engine application: A review. Renewable and Sustainable Energy Reviews, 14(7), 1999–2008. https://doi.org/10.1016/j.rser.2010.03.020

Bae, C., & Kim, J. (2017). Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute, 36(3), 3389–3413. https://doi.org/10.1016/j.proci.2016.09.009

Baek, S., Lee, H., & Lee, K. (2021). Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger. Energy, 214, 119049. https://doi.org/10.1016/j.energy.2020.119049

Barbella, R., Bertoli, C., Ciajolo, A., & D’anna, A. (1990). Behavior of a fuel oil during the combustion cycle of a direct injection diesel engine. Combustion and Flame, 82(2), 191–198. https://doi.org/10.1016/0010-2180(90)90097-B

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142–151. https://doi.org/10.1016/j.enconman.2017.01.010

Berggren, C., & Magnusson, T. (2012). Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy. Energy Policy, 41, 636–643. https://doi.org/10.1016/j.enpol.2011.11.025

Bhola, D. R. (2011). CFD analysis of flow through venturi of carburetor [BTech]. http://ethesis.nitrkl.ac.in/2296/

Blomshield, F. (t.t.). Historical perspective of combustion instability in motors—Case studies. Dalam 37th Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2001-3875

Budiyono, B. (2020). Pengaruh Catalytic Converter Berbahan Tembaga 0,6 Mm Berbentuk Sirip Terhadap Hasil Emisi Gas Buang Pada Honda Beat Tahun 2015. Al Jazari, 5(2), 363567. https://doi.org/10.31602/al-jazari.v5i2.4029

Ch., J. A. C., Lozano, J., Barriga, B., Tafur, J., Lengua, J. C., Solano, G., & Menacho, D. (2021). Optimal vibration analysis for a combustion motor. 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), 166–170. https://doi.org/10.1109/ICIEA51954.2021.9516132

Chanpeng, W., & Chunkaew, P. (2014). Comparative Performance of Updraft-Gasified Gas Yields and Gasoline Fuel for Water Pumping. Energy Procedia, 56, 498–504. https://doi.org/10.1016/j.egypro.2014.07.184

Chen, L., Zheng, T., Sun, F., & Wu, C. (2003). The power and efficiency characteristics for an irreversible Otto cycle. International Journal of Ambient Energy, 24(4), 195–200. https://doi.org/10.1080/01430750.2003.9674923

Crosbie, S., Polanka, M., Litke, P., & Hoke, J. (t.t.). Increasing Reliability of a Small 2-Stroke Internal Combustion Engine for Dynamically Changing Altitudes. Dalam 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2012-950

Demirbas, A. (2002). Fuel Properties of Hydrogen, Liquefied Petroleum Gas (LPG), and Compressed Natural Gas (CNG) for Transportation. Energy Sources, 24(7), 601–610. https://doi.org/10.1080/00908312.2002.11877434

Doppalapudi, A. T., Azad, A. K., & Khan, M. M. K. (2021). Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review. Renewable and Sustainable Energy Reviews, 152, 111683. https://doi.org/10.1016/j.rser.2021.111683

Dziubak, T. (2016). Operating fluids contaminantions and their effect on the wear of elements of a motor vehicle’s combustion engine. Archiwum Motoryzacji, 72(2), 43–72.

Efendi, R. Y., Handoyono, N. A., & Hadi, S. (2023). Analysis of The Use of CDI Variations with Fuel Variations on the Power and Torque of a Single Cylinder Gasoline Motor. Science Tech: Jurnal Ilmu Pengetahuan Dan Teknologi, 9(2), Article 2. https://doi.org/10.30738/st.vol9.no2.a14744

Egler, W., Giersch, R. J., Boecking, F., Hammer, J., Hlousek, J., Mattes, P., Projahn, U., Urner, W., & Janetzky, B. (2010). Fuel Injection Systems. Dalam K. Mollenhauer & H. Tschöke (Ed.), Handbook of Diesel Engines (hlm. 127–174). Springer. https://doi.org/10.1007/978-3-540-89083-6_5

Ferg, E. E., Schuldt, F., & Schmidt, J. (2019). The challenges of a Li-ion starter lighting and ignition battery: A review from cradle to grave. Journal of Power Sources, 423, 380–403. https://doi.org/10.1016/j.jpowsour.2019.03.063

Fernandez, D., Rifani, A., S, W., & Sugiarto, T. (2022). Analisis Penggunaan Bioaditif Minyak Atsiri Terhadap Konsumsi Bahan Bakar Dan Emisi Gas Buang Pertalite Sepeda Motor 4 Langkah. Ensiklopedia of Journal, 5(1), Article 1. https://doi.org/10.33559/eoj.v5i1.907

Ferrari, G., Onorati, A., & D’Errico, G. (2022). Internal Combustion Engines. Società Editrice Esculapio.

Fuller, J., Best, M., Garret, N., & Passmore, M. (2013). The importance of unsteady aerodynamics to road vehicle dynamics. Journal of Wind Engineering and Industrial Aerodynamics, 117, 1–10. https://doi.org/10.1016/j.jweia.2013.03.006

Garg, A., Magee, M., Ding, C., Roberts, L., Shaver, G., Koeberlein, E., Shute, R., Koeberlein, D., McCarthy, J., & Nielsen, D. (2016). Fuel-efficient exhaust thermal management using cylinder throttling via intake valve closing timing modulation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(4), 470–478. https://doi.org/10.1177/0954407015586896

Geng, P., Cao, E., Tan, Q., & Wei, L. (2017). Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review. Renewable and Sustainable Energy Reviews, 71, 523–534. https://doi.org/10.1016/j.rser.2016.12.080

Gupta, A., Sharma, S., & Narayan, S. (2017). Combustion Engines: An Introduction to Their Design, Performance, and Selection. John Wiley & Sons.

Gupta, H. N. (2012). Fundamentals Of Internal Combustion Engines. PHI Learning Pvt. Ltd.

Gupta, V. K., Zhang, Z., & Sun, Z. (2011). Modeling and control of a novel pressure regulation mechanism for common rail fuel injection systems. Applied Mathematical Modelling, 35(7), 3473–3483. https://doi.org/10.1016/j.apm.2011.01.008

Hänggi, S., Elbert, P., Bütler, T., Cabalzar, U., Teske, S., Bach, C., & Onder, C. (2019). A review of synthetic fuels for passenger vehicles. Energy Reports, 5, 555–569. https://doi.org/10.1016/j.egyr.2019.04.007

Hoffmann, K. H., Watowich, S. J., & Berry, R. S. (1985). Optimal paths for thermodynamic systems: The ideal diesel cycle. Journal of Applied Physics, 58(6), 2125–2134. https://doi.org/10.1063/1.335977

Hosseini, S. E., & Wahid, M. A. (2016). Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews, 57, 850–866. https://doi.org/10.1016/j.rser.2015.12.112

Johnson, T., & Joshi, A. (2018). Review of Vehicle Engine Efficiency and Emissions. SAE International Journal of Engines, 11(6), 1307–1330.

Kalghatgi, G. T. (2015). Developments in internal combustion engines and implications for combustion science and future transport fuels. Proceedings of the Combustion Institute, 35(1), 101–115. https://doi.org/10.1016/j.proci.2014.10.002

Kaya, D., Çanka Kılıç, F., & Öztürk, H. H. (2021). Fuels and Combustion. Dalam D. Kaya, F. Çanka Kılıç, & H. H. Öztürk (Ed.), Energy Management and Energy Efficiency in Industry: Practical Examples (hlm. 227–263). Springer International Publishing. https://doi.org/10.1007/978-3-030-25995-2_8

Khalife, E., Tabatabaei, M., Demirbas, A., & Aghbashlo, M. (2017). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science, 59, 32–78. https://doi.org/10.1016/j.pecs.2016.10.001

Khumaedi, M., Wahyudi, W., & Burhan, M. (2020). Differences of Fuel and Capacitor Discharge Ignition in Energy Output of Motorcycle. Arkus, 6(2), Article 2. https://doi.org/10.37275/arkus.v6i2.83

Kirkpatrick, A. T. (2020). Internal Combustion Engines: Applied Thermosciences. John Wiley & Sons.

Koossalapeerom, T., Satiennam, T., Satiennam, W., Leelapatra, W., Seedam, A., & Rakpukdee, T. (2019). Comparative study of real-world driving cycles, energy consumption, and CO2 emissions of electric and gasoline motorcycles driving in a congested urban corridor. Sustainable Cities and Society, 45, 619–627. https://doi.org/10.1016/j.scs.2018.12.031

Kurisko, N., & Mallory, J. A. (2015). Investigation on Ultrasonic Fuel Vaporizaiton and Oxygen Enhanced Combustion Cycles. Dalam 13th International Energy Conversion Engineering Conference. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2015-4016

Kuszewski, H., Jaworski, A., Ustrzycki, A., Lejda, K., Balawender, K., & Woś, P. (2017). Use of the constant volume combustion chamber to examine the properties of autoignition and derived cetane number of mixtures of diesel fuel and ethanol. Fuel, 200, 564–575. https://doi.org/10.1016/j.fuel.2017.04.021

Lee, W., Schubert, E., Li, Y., Li, S., Bobba, D., & Sarlioglu, B. (2016). Electrification of turbocharger and supercharger for downsized internal combustion engines and hybrid electric vehicles-benefits and challenges. 2016 IEEE Transportation Electrification Conference and Expo (ITEC), 1–6. https://doi.org/10.1109/ITEC.2016.7520254

Li, S., & Wang, Y. (2018). Performance Assessment of a Boiler Combustion Process Control System Based on a Data-Driven Approach. Processes, 6(10), Article 10. https://doi.org/10.3390/pr6100200

Lloyd, A. C., & Cackette, T. A. (2001). Diesel Engines: Environmental Impact and Control. Journal of the Air & Waste Management Association, 51(6), 809–847. https://doi.org/10.1080/10473289.2001.10464315

Mainier, F. B., Almeida, P. C. F., Nani, B., Fernandes, L. H., & Reis, M. F. (2015). Corrosion Caused by Sulfur Dioxide in Reinforced Concrete. Open Journal of Civil Engineering, 5(4), Article 4. https://doi.org/10.4236/ojce.2015.54038

Marbun, J., & Dahlan, D. (2020). Analisis Sistem Injeksi Air/Metanol Dan Air/Etanol Terhadap Konsumsi Bahan Bakar dan Emisi Gas buang. Jurnal Teknik Mesin ITI, 4(3), 109. https://doi.org/10.31543/jtm.v4i3.518

Mohan, B., Yang, W., & Chou, S. kiang. (2013). Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renewable and Sustainable Energy Reviews, 28, 664–676. https://doi.org/10.1016/j.rser.2013.08.051

Mohankumar, P., Ajayan, J., Yasodharan, R., Devendran, P., & Sambasivam, R. (2019). A review of micromachined sensors for automotive applications. Measurement, 140, 305–322. https://doi.org/10.1016/j.measurement.2019.03.064

Najamudin, N. (2019). Uji Eksperimental Antara Bahan Bakar Pertamax Dan Pertalite Terhadap Daya Dan Emisi Gas Buang Pada Motor Bakar 4 Langkah. PENELITIAN MANDIRI UNIVERSITAS BANDAR LAMPUNG, 0, Article 0. http://artikel.ubl.ac.id/index.php/LIT/article/view/1174

Noroozian, A., Sadaghiani, M. S., Ahmadi, M. H., & Bidi, M. (2017). Thermodynamic Analysis and Comparison of Performances of Air Standard Atkinson, Otto, and Diesel Cycles with Heat Transfer Considerations. Heat Transfer—Asian Research, 46(7), 996–1028. https://doi.org/10.1002/htj.21255

Pachiannan, T., Zhong, W., Rajkumar, S., He, Z., Leng, X., & Wang, Q. (2019). A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. Applied Energy, 251, 113380. https://doi.org/10.1016/j.apenergy.2019.113380

Pan, J., Shu, G., & Wei, H. (2014). Research on in-cylinder pressure oscillation characteristic during knocking combustion in spark-ignition engine. Fuel, 120, 150–157. https://doi.org/10.1016/j.fuel.2013.11.054

Park, C., Kim, S., Kim, H., & Moriyoshi, Y. (2012). Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine. Energy, 41(1), 401–407. https://doi.org/10.1016/j.energy.2012.02.060

Purwanto, W., Herlambang, Y. D., Paboreal Dunque, K. M., Mulani, F., Putra, D. S., & Martias, M. (2023). Enhancements to the Work Ability of a High-Speed Motor Used in Machine Tools. TEM Journal, 1443–1450. https://doi.org/10.18421/TEM123-24

Rashedul, H. K., Masjuki, H. H., Kalam, M. A., Ashraful, A. M., Ashrafur Rahman, S. M., & Shahir, S. A. (2014). The effect of additives on properties, performance and emission of biodiesel fuelled compression ignition engine. Energy Conversion and Management, 88, 348–364. https://doi.org/10.1016/j.enconman.2014.08.034

Rodríguez-Fernández, J., Ramos, Á., Barba, J., Cárdenas, D., & Delgado, J. (2020). Improving Fuel Economy and Engine Performance through Gasoline Fuel Octane Rating. Energies, 13(13), Article 13. https://doi.org/10.3390/en13133499

Ryden, T. (2014). High-Performance Ignition Systems. CarTech Inc.

Sinigaglia, T., Eduardo Santos Martins, M., & Cezar Mairesse Siluk, J. (2022). Technological evolution of internal combustion engine vehicle: A patent data analysis. Applied Energy, 306, 118003. https://doi.org/10.1016/j.apenergy.2021.118003

Tahan, M., Tsoutsanis, E., Muhammad, M., & Abdul Karim, Z. A. (2017). Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review. Applied Energy, 198, 122–144. https://doi.org/10.1016/j.apenergy.2017.04.048

Utomo Wisesa, B., & Dahlan, D. (2020). Pengembangan Bioaditif Serai Wangi Pada Bahan Bakar Bensin Terhadap Performa Mesin Dan Emisi Gas Buang Sepeda Motor. Teknobiz : Jurnal Ilmiah Program Studi Magister Teknik Mesin, 10(2), 29–35. https://doi.org/10.35814/teknobiz.v10i2.1486

Wagino, W., Alwi, E., Yasep Setiawan, M., Hidayat, N., Milana, M., Fernandez, D., & Padrigalan, K. E. (2024). Implementation of an Electric Turbocharger on A Single-Cylinder Spark Ignition Engine in an Effort to Use Ethanol Gasoline E40. TEM Journal, 161–166. https://doi.org/10.18421/TEM131-16

Wei, S., Ji, K., Leng, X., Wang, F., & Liu, X. (2014). Numerical simulation on effects of spray angle in a swirl chamber combustion system of DI (direct injection) diesel engines. Energy, 75, 289–294. https://doi.org/10.1016/j.energy.2014.07.076

Wilantara, B., Parikhin, P., Nasrullah, H., Hidayat, S. S., Ramadhan, W. A., Ashari, A., Nugroho, F., & Pangestu, T. P. (2021). Uji Modifikasi Komponen dan Sistem Pengapian Yamaha 5D9 Terhadap Emisi Gas Buang dan Konsumsi Bahan Bakar. AEEJ : Journal of Automotive Engineering and Vocational Education, 2(1), 53–60. https://doi.org/10.24036/aeej.v2i1.68

Wiyono, A., Gandidi, I. M., Berman, E. T., Mutaufiq, & Pambudi, N. A. (2020). Design, development and testing of integrated downdraft gasifier and multi IGCS system of MSW for remote areas. Case Studies in Thermal Engineering, 20, 100612. https://doi.org/10.1016/j.csite.2020.100612

Xu, H., Wang, C., Ma, X., Sarangi, A. K., Weall, A., & Krueger-Venus, J. (2015). Fuel injector deposits in direct-injection spark-ignition engines. Progress in Energy and Combustion Science, 50, 63–80. https://doi.org/10.1016/j.pecs.2015.02.002

Yaliwal, V. S., Banapurmath, N. R., Gireesh, N. M., Hosmath, R. S., Donateo, T., & Tewari, P. G. (2016). Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels. Renewable Energy, 93, 483–501. https://doi.org/10.1016/j.renene.2016.03.020

Yang, R., Sun, X., Liu, Z., Zhang, Y., & Fu, J. (2021). A Numerical Analysis of the Effects of Equivalence Ratio Measurement Accuracy on the Engine Efficiency and Emissions at Varied Compression Ratios. Processes, 9(8), Article 8. https://doi.org/10.3390/pr9081413

Yu, S., & Zheng, M. (2021). Future gasoline engine ignition: A review on advanced concepts. International Journal of Engine Research, 22(6), 1743–1775. https://doi.org/10.1177/1468087420953085

Zahedi, R., Pourezzat, A. A., & Jafari, M. (2024). Hybrid energy storage system for electric motorcycles: Technical and economic analysis. Case Studies in Thermal Engineering, 60, 104613. https://doi.org/10.1016/j.csite.2024.104613

Zhang, Y., Ghandhi, J., & Rothamer, D. (2018). Comparisons of particle size distribution from conventional and advanced compression ignition combustion strategies. International Journal of Engine Research, 19(7), 699–717. https://doi.org/10.1177/1468087417721089

Downloads

Published

June 17, 2025

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.