ANALISIS STRUKTUR DAN PERANCANGAN KONSTRUKSI MENGGUNAKAN SAP2000

PRIMA YANE PUTRI

UNDANG-UNDANG REPUBLIK INDONESIA NO 19 TAHUN 2002 TENTANG HAK CIPTA PASAL 72 KETENTUAN PIDANA SANGSI PELANGGARAN

- 1. Barang siapa dengan sengaja dan tanpa hak mengumumkan atau memperbanyak suatu Ciptaan atau memberi izin untuk itu, dipidana dengan pidana penjara paling singkat 1 (satu) bulan dan denda paling sedikit Rp 1.000.000, 00 (satu juta rupiah), atau pidana penjara paling lama 7 (tujuh) tahun dan denda paling banyak Rp 5.000.000.000, 00 (lima milyar rupiah)
- 2. Barang siapa dengan sengaja menyerahkan, menyiarkan, memamerkan, mengedarkan, atau menjual kepada umum suatu Ciptaan atau barang hasil pelanggaran Hak Cipta atau Hak Terkait sebagaimana dimaksud dalam ayat (1), dipidana dengan pidana penjara paling lama 5 (lima) tahun dan denda paling banyak Rp 500.000.000, 00 (lima ratus juta rupiah).

ANALISIS STRUKTUR DAN PERANCANGAN KONSTRUKSI MENGGUNAKAN SAP2000

PRIMA YANE PUTRI

2019

ANALISIS STRUKTUR DAN PERANCANGAN KONSTRUKSI MENGGUNAKAN SAP2000

editor, Tim editor UNP Press Penerbit UNP Press, Padang, 2019 1 (satu) jilid; 17.6 x 25 cm (B5) 307 hal.

ISBN: 978-602-1178-49-2

ANALISIS STRUKTUR DAN PERANCANGAN KONSTRUKSI MENGGUNAKAN SAP2000

Hak Cipta dilindungi oleh undang-undang pada penulis Hak penerbitan pada UNP Press

Penyusun: Prima Yane Putri Editor Substansi: TIM UNP Press Editor Bahasa: Prof. Dr. Harris Effendi Thahar, M.Pd Desain Sampul & Layout: Dr. Asrul Huda, M.Kom

KATA PENGANTAR

Saat ini penggunaan komputer sebagai alat bantu dalam menyelesaikan problem-problem numerik maupun non-numerik (teks, grafis, suara dan gambar) tidaklah asing lagi. Salah satunya adalah dalam bidang rekayasa struktur. Perkembangan yang pesat dalam rekayasa struktur telah memungkinkan kita untuk merencanakan bangunan-bangunan teknik berskala besar dengan tingkat kerumitan tinggi dan memperhitungkan berbagai jenis kondisi pembebanan. Analisis struktur bangunan tersebut sudah tidak dapat lagi dilakukan secara manual sehingga penggunaan komputer berikut perangkat lunaknya tidak dapat dihindari lagi. Salah satu program komputer canggih yang popular dipakai dalam analisis dan perancangan struktur kompleks adalah SAP2000 yang didasarkan pada metode elemen hingga.

Penulisan buku ini dimaksudkan untuk memberikan pemahaman kepada mahasiswa mengenai prinsip-prinsip dasar program SAP2000 sehingga dapat digunakan dalam melakukan analisis dan perancangan struktur.

Buku ini merupakan pengembangan dari buku Analisis Struktur sebelumya, dan dibuat dalam empat bagian, mulai dari pendahuluan yang menjelaskan tentang sejarah perkembangan program SAP2000 dan prinsip metode elemen hingga, menu-menu yang ada pada program SAP2000, penyelesaian contoh-contoh soal analisis struktur dengan menggunakan program SAP2000 dan aplikasi program SAP2000 untuk desain struktur yang dibebani dengan beban gempa statik dan dinamik. Sebagai materi pembelajaran, digunakan program SAP2000 versi student yang banyak beredar di lingkungan kampus dan bahkan di-download secara gratis bagi yang memerlukannya.

Walau bagaimanapun buku ini pasti lah tidak sempurna. Oleh karena itu kritik dan saran untuk perbaikan sangat diharapkan agar penulis dapat mengahasilkan karya yang lebih baik.

Padang, Agustus 2019

Penulis

DAFTAR ISI

KATA	A PENGANTAR	V
DAFT	AR ISI	. vii
DAFT	AR GAMBAR	viii
DAFT	AR TABEL	KIV
BAB 1	ANALISIS STRUKTUR BERBASIS KOMPUTER	1
A. B. C. E. F. G. H. I. J. K. L. N.	PENDAHULUAN KOMPUTER SEBAGAI TOOLS (ALAT BANTU) DALAM ANALISIS STRUKTUR SEJARAH PROGRAM SAP2000 DAN PERKEMBANGANNYA PROGRAM SAP2000 7.4 VERSI STUDENT SISTEM KOORDINAT PROPERTY POTONGAN BENTUK PENAMPANG END OFFSET END RELEASE MASSA BEBAN PADA STRUKTUR JOINT DAN DERAJAT KEBEBASAN DEGREE OF FREEDOM (DOF) OUTPUT GAYA-GAYA DALAM	1 2 3 4 7 .10 .11 .13 .15 .15 .18 .20 .23
BAB 2	2 MENU PADA SAP2000	. 25
A. B. C. D. E.	NEW INTERFACE Konvensi Perancangan Noun-Verb Setup Sistem Koordinat Menu pada SAP2000 versi Student	. 25 . 26 . 26 . 26 . 31
BAB 3	3 ANALISIS STRUKTUR DENGAN PEMBEBANAN STATIK	. 50
A. B. C. D. E. F.	BALOK (<i>BEAM</i>) PORTAL BIDANG (PLANE FRAME) RANGKA BATANG BIDANG BIDANG (<i>SLOPED TRUSS</i>) RANGKA BATANG RUANG (<i>SPACE TRUSS</i>) BALOK SILANG (<i>GRID</i>) PORTAL RUANG (<i>SPACE FRAME</i>)	. 51 . 76 143 192 220 236
BAB 4 AKIB	4 ANALISIS STRUKTUR DAN APLIKASI REKAYASA KONSTRU AT BEBAN GEMPA	KSI 253
A.	ANALISIS DAN DESAIN STRUKTUR PORTAL BIDANG	253

TENT	FANG PENULIS	292
DAFT	ГAR PUSTAKA	290
C.	ANALISIS STRUKTUR AKIBAT BEBAN GEMPA DINAMIK	285
	Ekivalen	274
В.	Analisis dan Desain Portal Ruang Akibat Beban Gempa	STATIK

DAFTAR GAMBAR

Gambar 1.1. Menentukan sudut putar ang	8
Gambar 1.2. Bentuk penampang yang geometrik property-nya	
dihitung otomatis oleh program SAP2000	11
Gambar 1.3. End offset pada elemen frame	13
Gambar 1.4. End release pada elemen frame	14
Gambar 1.5. Menentukan beban terpusat elemen	16
Gambar 1.6. Menentukan beban merata elemen	17
Gambar 1.7. Menentukan beban trapesium pada elemen	18
Gambar 1.8. Enam derajad kebebasan joint pada sistem koordinat	
local	21
Gambar 1.9. Contoh restraint pada dukungan	22
Gambar 1.10. Gaya dan momen internal elemen frame	24
Gambar 2.1. Tampilan awal window program SAP2000	27
Gambar 2.2. Item Menu pada Menu File	31
Gambar 2.3 Pilihan Template	32
Gambar 2.4. Item Menu pada Menu Edit	34
Gambar 2.5. Item Menu pada Menu View	36
Gambar 2.6. Item Menu pada Menu Define	38
Gambar 2.7. Item Menu pada Menu Draw	41
Gambar 2.8. Item Menu pada Menu Select	42
Gambar 2.9. Item Menu pada Menu Assign	43
Gambar 2.10. Item Menu pada Menu Analyze	44
Gambar 2.11. Item Menu pada Menu Display	45
Gambar 2.12. Item Menu pada Menu Design	47
Gambar 2.13. Item Menu pada Menu Option	48
Gambar 3.1. Balok pada Kansai International Airport,	
Ōsaka-Japan	52
Gambar 3.2. Konfigurasi Struktur dan Pembebanan	52
Gambar 3.3. Beberapa bentuk Model Struktur	53
Gambar 3.4. Konfigurasi Model Struktur	54
Gambar 3.5. Data Masukan untuk Berat Sendiri Struktur	55
Gambar 3.6. Data Masukan untuk Menampilkan Nomor Joint dan	
Elemen	55
Gambar 3.7. Mendefenisikan Jenis Tumpuan	56
Gambar 3.8. Konfigurasi Struktur Setelah Dimodifikasi	56
Gambar 3.9. Data Masukan Untuk Beban Terpusat Pada Balok	57
Gambar 3.10. Data Masukan Untuk Beban Merata Pada Balok	58
Gambar 3.11. Tampilan Setelah Selesai Analisis Model	59

Gambar 3.12. Pembebanan Pada Balok	66
Gambar 3.13. Deformasi Struktur dan Perpindahan pada joint 2	
dan Diagram Gaya Axial	67
Gambar 3.14. Diagram Gaya Geser Pada Elemen 3	69
Gambar 3.15. Diagram Momen Lentur Pada Elemen 2	69
Gambar 3.16. Diagram Deformasi dan Gaya Dalam Pada Struktur	70
Gambar 3.17. Konfigurasi Struktur Sebelum Dimodifikasi	71
Gambar 3.18. Konfigurasi Struktur Setelah Dimodifikasi	71
Gambar 3.19. Message Box Peringatan	72
Gambar 3.20 Kotak Joint Information untuk Joint 4	72
Gambar 3.21. Kotak Joint Information untuk Modifikasi Joint 4	73
Gambar 3.22. Joint 4 yang telah dimodifikasi	73
Gambar 3.23. Kotak Dialog untuk Modifikasi Grid Line (Sebelum	
Modifikasi)	74
Gambar 3.24. Kotak Dialog untuk Modifikasi Grid Line (Setelah	
Modifikasi)	74
Gambar 3.25. Struktur yang telah dimodifikasi	75
Gambar 3.26. Portal bidang atap Station Barkeley, California	77
Gambar 3.27. Konfigurasi Struktur dan Pembebanan	78
Gambar 3.28. Beberapa bentuk Model Struktur	79
Gambar 3.29. Data Masukan untuk Material Beton (Concrete)	80
Gambar 3.30. Data Masukan untuk Penampang Balok (Rectangular	
Section)	81
Gambar 3.31. Data Masukan untuk Tumpuan Jepit	83
Gambar 3.32. Penempatan Elemen-Elemen Pada Sistem Struktur	84
Gambar 3.33. Data Masukan Untuk Beban Terpusat dan Beban	
Merata Pada Balok	85
Gambar 3.34. Data Masukan Untuk Beban Terpusat Vertikal Pada	
Joint	86
Gambar 3.35. Data Masukan Untuk Beban Terpusat Horizontal Pada	
Joint	86
Gambar 3.36. Beban Pada Elemen dan Beban Pada Joint	95
Gambar 3.37. Deformasi Struktur dan Perpindahan pada joint 8	96
Gambar 3.38. Diagram Momen Struktur dan Momen Lentur Pada	
Elemen 5	97
Gambar 3.39. Diagram Gaya Geser dan Gaya Normal Pada Struktur	98
Gambar 3.40. Reaksi Tumpuan pada Joint 7	99
Gambar 3.41. Sumbu Lokal Elemen – Penomoran Joint dan Elemen	
Pada Struktur	99
Gambar 3.42. Konfigurasi Struktur dan Pembebanan Pada Struktur 1	01

Gambar 3.43. Beberapa Bentuk Model Struktur	103
Gambar 3.44. Data Masukan untuk Konfigurasi Struktur	103
Gambar 3.45. Data Masukan untuk Menampilkan Nomor Joint	
dan Elemen	104
Gambar 3.46. Konfigurasi Struktur Sebelum Dimodifikasi	105
Gambar 3.47. Konfigurasi Struktur Setelah Dimodifikasi	106
Gambar 3.48. Data Masukan untuk Material Baja (Steel)	107
Gambar 3.49. Data Masukan untuk Profil IWF 300x200	108
Gambar 3.50. Pilihan Profil I/Wide Flange	109
Gambar 3.51. Data Masukan untuk Profil W12x40	110
Gambar 3.52. Data Masukan Untuk Beban Trapesium	112
Gambar 3.53. Data Masukan Untuk Beban Segitiga	113
Gambar 3.54. Data Masukan Untuk Beban Terpusat	114
Gambar 3.56. Data Masukan Untuk Menampilkan Beban	115
Gambar 3.57. Pembebanan Pada Portal Baja	116
Gambar 3.58. Tampilan Setelah Selesai Analisis Model	117
Gambar 3.59. Deformasi Struktur, Diagram Momen Lentur, Gaya	
Lintang dan Gaya Normal	118
Gambar 3.60. Pemilihan Acuan Standard Untuk Desain	119
Gambar 3.61. Kombinasi Pembebanan Yang Dipilih untuk Desain	
Baja	120
Gambar 3.62. Rasio Tegangan Pada Elemen-Elemen Portal Baja	121
Gambar 3.63. Konfigurasi Struktur dan Pembebanan	132
Gambar 3.64. Beberapa bentuk Model Struktur	134
Gambar 3.65. Deformasi dan Bidang Momen Akibat Kombinasi	
PembebananTetap (Comb1)	141
Gambar 3.66. Deformasi dan Bidang Momen Akibat Kombinasi	
Pembebanan Sementara 1 (Comb2)	142
Gambar 3.67. Deformasi dan Bidang Momen Akibat Kombinasi	
Pembebanan Sementara 2 (Comb3)	142
Gambar 3.68. Struktur Truss Tyne Bridge di Newcastle, Inggris.	143
Gambar 3.69. Struktur Rangka The Crystal Palace, London	144
Gambar 3.70. Konfigurasi Struktur dan Pembebanan Pada Struktur	
Truss 2D	144
Gambar 3.71. Potongan Penampang Pada Struktur	145
Gambar 3.72. Beberapa Bentuk Model Struktur	146
Gambar 3.73. Data Masukan untuk Konfigurasi Struktur	146
Gambar 3.74. Data Masukan untuk Material Baja (Steel)	147
Gambar 3.75. Pilihan Profil Double Angle	148
Gambar 3.76. Data Masukan untuk Profil 2xL5x5x3/4-3/8	149

Gambar 3.77. Pilihan Profil Double Angle	149
Gambar 3.78. Data Masukan untuk Profil 2xL4x4x1/2-3/8	150
Gambar 3.79. Menentukan Profil Elemen Truss	151
Gambar 3.80. Data Masukan Untuk Berat Sendiri Profil	152
Gambar 3.81 Data Masukan Untuk Beban Terpusat LOAD1	153
Gambar 3.82. Data Masukan Untuk Frame Release Struktur	
Rangka	154
Gambar 3.83. Tampilan Setelah Selesai Analisis Model	155
Gambar 3.84. Deformasi Struktur akibat Beban DL	156
Gambar 3.85. Gaya Aksial akibat Beban DL	157
Gambar 3.86. Pemilihan Acuan Standard Untuk Desain	158
Gambar 3.87. Rasio Tegangan Pada Elemen-Elemen Rangka Baja	159
Gambar 3.88. Tampilan Informasi Kontrol Tegangan Elemen 2	160
Gambar 3.89. Tampilan Details Elemen 2	160
Gambar 3.90. Menyimpan Data Input	161
Gambar 3.91. Menyimpan Data Output Analisis	162
Gambar 3.92. Tampilan Model Struktur Setelah dilakukan Frame	
Release	164
Gambar 3.93. Struktur Rangka Atap	166
Gambar 3.94. Beban merata pada struktur rangka atap	167
Gambar 3.95. Beban terpusat pada struktur rangka atap	167
Gambar 3.96. Beban angin pada struktur rangka atap	168
Gambar 3.97. Beban angin pada struktur rangka atap	169
Gambar 3.98. Detail dan Potongan Sambungan	169
Gambar 3.99. Konfigurasi StrukturRangka Atap	170
Gambar 3.100. Data Masukan untuk Material Baja (Steel)	175
Gambar 3.101. Data Masukan untuk Profil Siku TunggalL.70.70.7	176
Gambar 3.102. Data Masukan untuk Profil Siku Rangkap	
2-L.50.50.5	177
Gambar 3.103. Deformasi Struktur dan Lendutan pada Joint 6	183
Gambar 3.104. Data Masukan untuk Desain Struktur Baja dengan	
Metode ASD	184
Gambar 3.105. Data Kombinasi Pembebanan Untuk Desain	184
Gambar 3.106. Rasio Tegangan Pada Elemen Struktur (Desain	
awal)	185
Gambar 3.107. Penomoran elemen struktur	186
Gambar 3.108. Penempatan Profil pada Struktur Rangka Atap	190
Gambar 3.109. Rasio Tegangan dari Elemen-elemen Struktur (Desa	in
Ulang)	191
Gambar 3.110. Struktur Truss Menara Eiffel, Paris	192

Gambar 3.111 Konfigurasi Struktur dan Pembebanan	193
Gambar 3.112. Data Masukan untuk Konfigurasi Struktur	195
Gambar 3.113. Data Masukan untuk Material Baja (Steel)	195
Gambar 3.114. Data Masukan untuk Profil Siku.150.150.15	197
Gambar 3.115. Deformasi Struktur akibat COMB1 dan COMB2	201
Gambar 3.116 Konfigurasi Struktur	203
Gambar 3.117. Data Masukan untuk Konfigurasi Struktur	204
Gambar 3.118. Tampilan Struktur	205
Gambar 3.119. Data Masukan untuk Replicate Struktur	205
Gambar 3.120. Struktur setelah dilakukan Replicate	206
Gambar 3.121. Kotak Dialog untuk Modifikasi Grid Line	206
Gambar 3.122. Model Struktur	207
Gambar 3.123. Model Struktursetelah ditambahkan Bracing	208
Gambar 3.124. Pindah sejauh $Z = 100$	208
Gambar 3.125. Lantai Jembatan	209
Gambar 3.126. Tampilan XY dengan perspective toggle	210
Gambar 3.127 Kotak Dialog Divide Frame	210
Gambar 3.128. Sebelum Dan Sesudah Break Bracing	211
Gambar 3.129. Tampilan XZ dengan perspective toggle	211
Gambar 3.130. Sesudah Break Bracing	212
Gambar 3.131. Data Masukan untuk Material Baja (Steel)	213
Gambar 3.132. Data Masukan untuk Material Beton (Concrete) .	213
Gambar 3.133. Pilihan Profil I/Wide Flange	214
Gambar 3.134. Data Masukan untuk Profil W6X12	215
Gambar 3.135. Data Shell Section	215
Gambar 3.136. Setelah Assign Frame dan Shell Section	217
Gambar 3.137. Setelah Assign Frame dan Shell Section	218
Gambar 3.138. Struktur Grid Bandara Dallas – Texas	220
Gambar 3.139. Denah dan Potongan Struktur Grid Lantai Beton	221
Gambar 3.140. Pembebanan pada Lantai Beton	222
Gambar 3.141. Data Masukan untuk Model Struktur Frame 3	
Dimensi	224
Gambar 3.142. Konfigurasi Struktur Portal 3 Dimensi	228
Gambar 3.143. Konfigurasi Beban pada Balok Tepi (DL)	230
Gambar 3.144. Konfigurasi Beban pada Balok Dalam (DL)	230
Gambar 3.145. Konfigurasi Beban pada Balok Tepi (LL)	231
Gambar 3.146. Konfigurasi Beban pada Balok Dalam (LL)	232
Gambar 3.147. Konfigurasi Struktur Sebelum dan Sesudah	
Berdeformasi	234
Gambar 3.148. Diagram Momen 3-3 dan Gaya Geser 2-2	234

Gambar 3.149. Diagram Momen 2-2 dan Gaya Geser 3-3	235
Gambar 3.150. Diagram Gaya Normal dan Momen Puntir/Torsi.	235
Gambar 3.151. Rangka Utama Struktur Portal Ruang	236
Gambar 3.152. Konfigurasi Struktur Portal 3D	237
Gambar 3.153. Pelimpahan Beban pada Balok-balok Struktur	238
Gambar 3.154. Data Masukan untuk Model Struktur Frame 3	
Dimensi	242
Gambar 3.155. Konfigurasi Struktur Portal 3 Dimensi	245
Gambar 3.156. Konfigurasi Struktur Sebelum dan Sesudah	
Berdeformasi	251
Gambar 3.157. Diagram Momen 3-3 dan Gaya Geser 2-2	251
Gambar 3.158. Diagram Momen 2-2 dan Gaya Geser 3-3	252
Gambar 3.159. Diagram Gaya Normal dan Momen Puntir/Torsi	252
Gambar 4.1. Struktur Portal Beton dan Pembebanan	253
Gambar 4.2. Data Masukan untuk Material Beton	257
Gambar 4.3. Data Penulangan untuk Elemen Balok	258
Gambar 4.4. Data Penulangan untuk Elemen Kolom	259
Gambar 4.5. Data untuk Kombinasi Pembebanan Sementara2	
(COMB3)	263
Gambar 4.6. Data Masukan untuk Faktor Reduksi Kekuatan Bahan 2	266
Gambar 4.7. Kombinasi Pembebanan Untuk Desain (Design	
Combos)	267
Gambar 4.8. Data Masukan untuk Mendefeninisikan Portal Elastis	267
Gambar 4.9. Penomoran Elemen Struktur	268
Gambar 4.10. Desain Luas Tulangan Longitudinal	269
Gambar 4.11. Desain Luas Tulangan Geser	269
Gambar 4.12. Window Informasi Elemen 17	270
Gambar 4.13. Detail Analisis Elemen Balok nomor 17	270
Gambar 4.14. Window Informasi Elemen 1	271
Gambar 4.15. Detail Analisis Elemen Balok nomor 17	271
Gambar 4.16. Diagram Interaksi Kolom nomor 1	272
Gambar 4.17. Konfigurasi Struktur	275
Gambar 4.18. Beban Mati Pada Portal arah X (Portal I & II)	282
Gambar 4.19. Beban Mati Pada Portal arah Y (Portal A & B)	283
Gambar 4.20. Beban Hidup Pada Portal arah X (Portal I & II)	283
Gambar 4.21. Beban Hidup Pada Portal arah Y (Portal A & B)	284
Gambar 4.22. Beban Gempa Pada Portal arah X & Y	284
Gambar 4.23. Contoh Rekaman Ground Motion (Chopra, 1995).	
	288
Gambar 4.24. Komponen Utara-Selatan Percepatan Tanah Horizonta	288 al

DAFTAR TABEL

Tabel 1. Rumus untuk menentukan Shear Area	9
Tabel 2. Distribusi gaya geser horizontal	281