OTOMASI INDUSTRI DENGAN ARDUINO OUTSEAL PLC

Risfendra Herlin Setyawan

Risfendra HerlinSetyawan Otomasi Industri dengan Arduino Outseal PLC

i

UNDANG-UNDANG REPUBLIK INDONESIA NO 19 TAHUN 2002 TENTANG HAK CIPTA PASAL 72 KETENTUAN PIDANA SANGSI PELANGGARAN

- 1. Barang siapa dengan sengaja dan tanpa hak mengumumkan atau memperbanyak suatu Ciptaan atau memberi izin untuk itu, dipidana dengan pidana penjara paling singkat 1 (satu) bulan dan denda paling sedikit Rp 1.000.000, 00 (satu juta rupiah), atau pidana penjara paling lama 7 (tujuh) tahun dan denda paling banyak Rp 5.000.000.000, 00 (lima milyar rupiah)
- 2. Barang siapa dengan sengaja menyerahkan, menyiarkan, memamerkan, mengedarkan, atau menjual kepada umum suatu Ciptaan atau barang hasil pelanggaran Hak Cipta atau Hak Terkait sebagaimana dimaksud dalam ayat (1), dipidana dengan pidana penjara paling lama 5 (lima) tahun dan denda paling banyak Rp 500.000.000, 00 (lima ratus juta rupiah).

Risfendra HerlinSetyawan Otomasi Industri dengan Arduino Outseal PLC

ii

OTOMASI INDUSTRI DENGAN ARDUINO OUTSEAL PLC

Risfendra Herlin Setyawan

2020

OTOMASI INDUSTRI DENGAN ARDUINO OUTSEAL PLC

editor, Tim editor UNP Press Penerbit UNP Press, Padang, 2020 1 (satu) jilid; 14 x 21 cm (A5) 240 hal.

ISBN: 978-602-1178-66-9

OTOMASI INDUSTRI DENGAN ARDUINO OUTSEAL PLC

Hak Cipta dilindungi oleh undang-undang pada penulis Hak penerbitan pada UNP Press Penyusun: Risfendra, S.Pd., M.T., Ph.D & Herlin Setyawan S.Pd Editor Substansi: TIM UNP Press Editor Bahasa: Prof. Dr. Harris Effendi Thahar, M.Pd Desain Sampul& Layout: Dr. Asrul huda, S.Kom., M.Kom & Noper Ardi, S.Pd., M.Eng

iv

Otomasi Industri dengan Arduino Outseal PLC

Risfendra HerlinSetyawan

KATA PENGANTAR

Puji syukur kita ucapkan kepada Allah SWT, yang telah memberikan kesehatan fisik dan akal. Dengan kesehatan tersebut manusia dapat mengamati, menghayati. merasakan dan menganalisis segala kebesaranya sehingga dapat menjadi pembelajaran untuk kita semua. Tak luput pula diucapkan shalawat dan salam kita do'akan buat junjungan/panutan kita yakni nabi Muhammad SAW yang semaksimal mungkin kita berupaya meneladaninya sehingga menjadi manusia yang berakhlakul karimah.

Buku ini ditulis dan disusun sebagai sumber belajar tambahan bagi mahasiswa teknik elektro tahun dua (semester tiga hingga semester 8), dalam mempelajari sistem kontrol otomasi yang ada di insustri dengan menggunakan *programmable logic controller*. Dikatakan sumber belajar tambahan dikarenakan buku ini untuk memperkaya wawasan pembaca dapat merujuk pada buku-buku lain terkait atau dapat merujuk pada buku yang ada pada daftar pustaka dimassing-masing topik. Sistem kontrol yang dibahas lebih menekankan pada PLC yang baru dikembangkan yakni Outseal PLC Shield yang menggunakan Arduino sebagai mikrokontroler proses input, output dan pemprogramanya. Buku ini dilengkapi juga dengan latihan-latihan yang dapat mempermudah pembaca untuk memahasi sistem kontrol otomasi dengan

Risfendra HerlinSetyawan V

menggunakan Outseal PLCBerbeda dengan bahasan sistem otomasi lainya yang menggunakan PLC merek terkenal sebagai pengontrolnya.

Buku ini terdiri dari sembilan bab bahasan, pada bab I berisi tentang pengenalan outseal PLC shield dengan sub materi pengenalan input dan output outseal PLC, power supplay PLC shield dan penambahan modul yang digunakan oleh outseal PLC. Bab II membahas tentang apllikasi yang digunakan oleh outseal PLC yakni outseal studio. Adapun sub pokok pahasanya adalah proses instalasi outseal studi, proses instalasi driver outseal PLC dan pengenalan tool-tool yang ada didalam outseal studio. Bab III membahas tentang variabel dan instruksi yang digunakan oleh outseal PLC baik instruksi input, instruksi output dan instruksi proses. Adapun sub materi yang dibahasn adalah istilah notasi variabel, struktur operasi, kelompok instruksi bit, kelompok instruksi waktu, kelompok instruksi perbandingan, kelompok instruksi perhitungan, kelompok instruksi logika, kelompok instruksi data dan kelompok instruksi control.

Bab IV pada buku ini sudah membahas tentang trainer outseal PLC yang digunakan. Bab V membahan tentang penggunaan outseal studi. Bab VI membahas tentang keselamatan kerja penggunaan outseal dan pemelihaaraan trainer outseal. Bab VII membahas tentang serial komunikasi outseal PLC dengan sub bahasan modbus, instruksi modbus RTU outseal. Bab VIII

Risfendra HerlinSetyawan vi

membahas tentang *human machines interface* waintek yang sudah suport dengan outseal PLC sub bahasan yang akan di bahas adalah pengenalan human machines interface (HMI) waintek, instalisasi aplikasi easybuilder pro untuk program hmi waintek dan pengenalan aplikasi easybuilder. Bab IX membahas tentang latihan-latihan penggunaan outseal PLC dengan latiahan-latihan yang diberikan sebagai berikut latihan program dasar input dan output, pengoperasian motor 3 fasa secara direc online (DOL), pengoperasian motor 3 fasa secara interlocking dan pengoperasian motor 3 fasa start bintang segitiga.

Ucapan terimakasih sebesar-besarnya penulis ucapkan kepada semua pihak yang telah membantu dan berkontribusi dalam penulisan buku ini baik secara langsung ataupun secara tidak langsung. Secara khusus pebulis ucapkan terimakasih sedalam-dalamnya kepada:

- 1. Rektor Universitas Negeri Padang yaitu Bapak Prof. Ganefri, Ph.D yang memberi perhatian khusus dalam peningkatan kualitasbidang akademik khususnya penyediaan perangkat pembelajaran ini, serta peningkatan kualitas dan martabat Dosen melalui aktifitas menulis.
- Istri ku Elvira Nur atas cinta, pengorbanan dan kesabaranya dalam mendampingi penulis mengarungi bahtera kehidupan dan melakoni aktifitas kehidupan di panggung sandiwara ini. Anak-anak ku, Siti Hana Maysuroh, Siti Najwa

vii

Risfendra HerlinSetyawan Nazhifha, dan Rezieq Ilman Alkarim, kalianlah anugrah terindah dari tuhan yang membuat penulis berdebar, harap-harap cemas dan membuat segala aktifitas ini terasa lebih bermakna.

Padang, 26 November 2020

Penulis

DAFTAR ISI

KATA I	PENGANTAR	vi
DAFTA	R ISI	х
DAFTA	R GAMBAR	ix
DAFTA	R TABEL	ix
BAB I.	PENGENALAN OUTSEAL PLC SHIELD	1
Α.	Outseal PLC Shield	1
В.	Catu Daya Outseal PLC Shield V.2	3
C.	Input Outseal PLC Shield	5
D.	Output Outseal PLC Shield	8
E.	Penambahan Modul Input/Output	11
BAB II.	PENGENALAN OUTSEAL STUDIO	12
А.	Instalasi Outseal Studio	12
В.	Instalasi Driver Outseal Studio	16
C.	Penjabaran Fasilitas Outseal Studio	20
BAB III	. INSREUKSI OUTSEAL PLC SHIELD	32
A.	Istilah	32
В.	Notasi Variabel	33
C.	Struktur Operasi	35
D.	Kelompok Instruksi Bit	38
E.	Kelompok Instruksi Waktu	46
F.	Kelompok Instruksi Perbandingan	57
G.	Kelompok Instruksi Perhitungan	61
H.	Kelompok Instruksi Logika	67
I.	Kelompok Instruksi Data	70
J.	Kelompok Instruksi Control	71
BAB IV	. PENGENALAN TRAINER PLC BERBASIS	OUTSEAL
PLC SH	IELD	74
А.	Unit Programmable Logic Controller (PLC)	74
В.	Komponen Input	75
C.	Koponen Output	77
D.	Komponen Pengaman	80
E.	Unit Power Supply	83

ix

BA	ΒV.	CARA PENGGUNAAN OUTSEAL STUDIO	85
BA	B VI A.	. KESELAMATAN KERJA Keselamatan Kerja	93 93
	В.	Mengatasi Masalah pada Trainer	93
BA	B VI	I. SERIAL KOMUNIKASI OUTSEAL	97
	А.	Modbus RTU	97
	В.	Instruksi Modbus RTU Outseal	105
BA	B VI	II. HUMAN MACHINES INTERFACE (HMI)	128
	А.	Pengenalan Human Machines Interface (HMI) Waintek	
		-	128
	B.	Instalisasi Aplikasi Easybuilder Pro untuk Program HM	11
		Waintek	133
	C.	Pengenalan Aplikasi Easybuilder	140
	D.	Instruksi Dasar HMI Waintek	144
BA	B IX	LATIHAN PENGGUNAAN OUTSRAL PLC SHIELI	D
			171
	A.	Latihan Program Dasar Input dan Output	171
	B.	Pengoperasian Motor 3 Fasa Secara Direc Online (DOI	.)
			185
	С	Pengoperasian Motor 3 Fasa Secara Interlocking	196
	D.	Pengoperasian Motor 3 Fasa Start Bintang Segitiga	209
	D.	Tengoperasian Wotor 5 Tasa Start Dintang Segriga	207
BA	ВX.	LATIHAN PENGGUNAAN OUTSEAL PLC SHIELD)
DE	NGA	N HMI WAINTEK	223
	A.	Penggunaan Bit Lamp dan Set Bit	223
DA	FTA	R PUSTAKA	236

DAFTAR GAMBAR

Gambar 1. Mengenal Outseal PLC Shield V.2	3
Gambar 2. Pin Power Supply Outseal PLC Shield V.2	5
Gambar 3. Penyambungan Input dengan Metode Sinking	6
Gambar 4. Penyambungan Input Outseal PLC Shield V.2	6
Gambar 5. Pin Input Analog Outseal PLC Shield V.2	7
Gambar 6. Cara Mengkalibrasi Shunt Resistor	7
Gambar 7. Penyambungan PLC dengan Relay Board	9
Gambar 8. Penyambungan PLC dengan Relay	
24 VDC Langsung	8
Gambar 9. Penyambungan Modul Input/Output (a) Modul	
Dipasangkan Seri, (b) Modul Dipasangkan Paralel	kan
	11
Gambar 10. Menu License Agreement	13
Gambar 11. Menu Informasi	14
Gambar 12. Menu Select Additional Task	14
Gambar 13. Menu Ready to Instal	15
Gambar 14. Menu Informasi	15
Gambar 15. Menu Completing the Outseal Studio Setup Wizar	16
Gambar 16. Aplikasi Outseal Studio	16
Gambar 17. Membuka Properties	17
Gambar 18. Membuka Device Manager	17
Gambar 19. Tanda Driver Belum Terinstal	18
Gambar 20. Tanda Driver Sudah Terinstal	18
Gambar 21. Menu Instalasi Driver USB Outseal PLC Shield	19
Gambar 22. Menu Driver Siap Diinstal	20
Gambar 23. Fitur-Fitur Outseal Studio	20
Gambar 24. Tab Utama Panel Atas	21
Gambar 25. Tab Modul Panel Atas	21
Gambar 26. Menu Setting Project	24
Gambar 27. Menu Diagram Tangga	24
Gambar 28. Menu Modul	25
Gambar 29. Menu System Setting	26
Gambar 30. Menu Perangkat	27
Gambar 31. Kolom Pungut Data	29
Gambar 32. Panel Diagram Tangga	29

Otomasi Industri dengan Arduino Outseal PLC

xi

Gambar 33. Simulasi Dasar	30
Gambar 34. Simulasi Pompa Air	30
Gambar 35. HMI Outseal PLC Shield	31
Gambar 36. Diagram Tangga	32
Gambar 37. Istilah dalam Diagram Tangga	33
Gambar 38. Struktur Operasi Outseal PLC Shield	36
Gambar 39. Struktur Operasi Pembacaan Ladder Diagram	37
Gambar 40. Struktur Operasi Program Saat Dijalankan	38
Gambar 41. Instriksi Kelompok Bit	38
Gambar 42. Instruksi NO Bernilai True dan False	39
Gambar 43. Instruksi-Instruksi Bit	39
Gambar 44. Simulasi Instruksi NO (a) Instruksi S.1 (NO) Berlo	gika
False (b) Instruksi S.1 (NO) Berlogika True	40
Gambar 45. Simulasi Instuksi NC (a) Instruksi S.2 (NC) Berlog	gika
True (b) Instruksi S.2 (NC) Berlogika False	42
Gambar 46. Struktur Instruksi Waktu	46
Gambar 47. Penjelasan Timer On Delay (TON)	47
Gambar 48. Contoh Pemasangan Timer	48
Gambar 49. Timing Diagram TON	49
Gambar 50. Instruksi Timer Off Delay (TOF)	50
Gambar 51. Timing Diagram TOF	51
Gambar 52. Penggunaan Counter Up (CTU)	54
Gambar 53. Contoh Penggunaan Instruksi Reset (RST)	56
Gambar 54. Penggunaan Instruksi EQU	58
Gambar 55. Penggunaan Instruksi GEQ	59
Gambar 56. Penggunaan Instruksi LIM	61
Gambar 57. Penggunaan Instruksi ADD	63
Gambar 58. Penggunaan Instruksi SUB	63
Gambar 59. Penggunaan Instruksi MUL	64
Gambar 60. Penggunaan Instruksi DIV	65
Gambar 61. Penggunaan Instruksi NEG	66
Gambar 62. Penggunaan Instruksi CLR	67
Gambar 63. Penggunaan Instruksi AND	68
Gambar 64. Penggunaan Instruksi OR	69
Gambar 65. Penggunaan Instruksi XOR	69
Gambar 66. Penggunaan Instruksi SET dan COPY	70
Gambar 67. Diagram Kontrol PID	71
Gambar 68. Instruksi PID	72

xii

Gambar 69. Bagian-Bagian Keseluruhan Trainer	74
Gambar 70. Outseal PLC Shield V.2	76
Gambar 71. Push Button yang Digunakan	76
Gambar 72. Limt Switch	77
Gambar 73. Tobol Emergensi	77
Gambar 74. Magnetic Contactor	78
Gambar 75. Rangkaian Snubbel Pada Kontaktor	78
Gambar 76. Pilot Lamp	80
Gambar 77. Miniatur Circuit Breaker (MCB)	82
Gambar 78. Thermal Overload Relay (TOR)	83
Gambar 79. Unit Power Supply	84
Gambar 80. Penyambungan PC/Leptop Ke Trainer	85
Gambar 81. Setingan Project Setting pada Panel Project	86
Gambar 82. Menyetinh System Setting di Outseal Studio	87
Gambar 83. Memasukan Instrusi Input (a) Memasukan Instruksi	
Kontak (b) Memasukan Data Instruksi Kontak	88
Gambar 84. Instruksi Output (a) Memasukan Instruksi Output (b)
Memasukan Data Instruksi Output	89
Gambar 85. Simulasi Program (a) Input PLC mendapatkan	
Tegangan (b) Input PLC tidak Mendapatkan Tegangan	91
Gambar 86. Proses Upload Program ke PLC	92
Gambar 87. Modul Serial RS485	99
Gambar 88. Modul Serial RS232	99
Gambar 89. Penyambungan Komunikasi Modbus RTU	
Menggunakan RS485	99
Gambar 90. Format Master Meminta Data dari Slave 100	
Gambar 91. Contoh Pengiriman Data Dari Master dan Slave	102
Gambar 92. Penyambungan Komunikasi Outseal PLC dengn	
Outseal PLC	107
Gambar 93. Hubungan Satu Master dengan Satu Slave	
Menggunakan MF1	110
Gambar 94. Program Outseal PLC untuk Slave	111
Gambar 95. Settingan Outseal PLC untuk Slave	111
Gambar 96. Program Outseal PLC untuk Master	112
Gambar 97. Hubungan Satu Master dengan Satu Slave	
Menggunakan MF2	114
Gambar 98. Setingan Outseal PLC Slave	115
Gambar 99. Program Outseal PLC Master Menggunakan MF2	116

xiii

Gambar 100. Hubungan Satu Master dengan Satu Slave	
Menggunakan MF3	118
Gambar 101. Program Outseal PLC Slave Menggunakan MF3	118
Gambar 102. Program Outseal PLC Master Menggunakan MF3	119
Gambar 103. Hubungan Satu Master dengan Satu Slave	
Menggunakan MF4	121
Gambar 104. Settingan Pengaktifan Input Analog	122
Gambar 105. Program Master Menggunakan Instruksi MF4	122
Gambar 106. Hubungan Satu Master dengan Satu Slave	
Menggunakan MF5	123
Gambar 107. Program Instruksi MF5 Outseal PLC Slave	124
Gambar 108. Program Instruksi MF5 Outseal PLC Master	124
Gambar 109. Hubungan Satu Master dengan Satu Slave	
Menggunakan MF6	126
Gambar 110. Program Instruksi MF6 Outseal PLC Slave	126
Gambar 111. Program Instruksi MF6 Outseal PLC Master	127
Gambar 112. Interaksi Antara HMI dengan Manusia dan Mesin	129
Gambar 113. Block Diagram Fungsi Utama HMI	131
Gambar 114. HMI Waintek MT8071iP	131
Gambar 115. Ekstrak Aplikasi Easybuilder Pro	133
Gambar 116. Awal Proses Instalisasi Aplikasi Easybuilder Pro	134
Gambar 117. Pemilihan Bahasa Easybuilder Pro	134
Gambar 118. Menu Setup Wizard Aplikasi Easybuilder Pro	135
Gambar 119. Menu Setup Easybuilder Pro	135
Gambar 120. Menu Penyimpanan Instaler Aplikasi Easybuilder	
Pro	136
Gambar 121. Menu Konfirmasi Pemilihan Folder Instaler	137
Gambar 122. Menu Penyimpanan Aplikasi Easybuilder Pro	137
Gambar 123. Untuk Memunculkan Aplikasi Easybuilder Pro di	
Desktop	138
Gambar 124. Menu Konfirmasi Instalasi Aplikasi Easybuilder	
Pro	139
Gambar 125. Penginstalasin Aplikasi Easybuilder Pro Sudah	
Selesai	139
Gambar 126. Hasil Instalasi Aplikasi Easybuilder Pro	140
Gambar 127. Menu Awal Aplikasi Easybuilder Pro	141
Gambar 128. Menu Awal Aplikasi Easybuilder Pro	141
Gambar 129. Menu Desain HMI	142

xiv

Gambar 130. Menu Instruksi dan Alamat Data Yang Digunakan	142
Gambar 131. Tampilan Menu Instruksi dan Desain HMI	
Waintek	143
Gambar 132. Tampilan Menu Librari Easybuilder Pro	143
Gambar 133. Menu Setting Bit Lamp	145
Gambar 134. Menu Setting Word Lamp	149
Gambar 135. Menu Setting Set Bit	150
Gambar 136. Menu Setting Set Word	154
Gambar 137. Fungsi Write Constant Value	155
Gambar 138. Fungsi increment value (JOG+)	155
Gambar 139. Fungsi Decrement Value (JOG-)	156
Gambar 140. Fungsi Press and Hold Increment (JOG++)	156
Gambar 141. Fungsi Press and Hold Decrement Value (JOG)	157
Gambar 142. Menu Setting Toggle Switch	158
Gambar 143. Menu Setting Instruksi Numeric	160
Gambar 144. Menu Setting Bar Grap	162
Gambar 145. Setting Outline	163
Gambar 146. Setting Range	166
Gambar 147. Menu Setting Meter Display	167
Gambar 148. Setting Outline	168
Gambar 149. Setting Limit	170
Gambar 152. Penyambungan Input Outseal PLC	172
Gambar 153. Penyambungan Output Outseal PLC dengan Relay	
Boar	173
Gambar 154. Penyambungan Output Outseal PLC dengan Relay	24
VDC	174
Gambar 155. Rangkaian Dasar Penyambungan Input dan Output	
Outseal PLC	175
Gambar 156. Program Dasar Pengoperasian Input dan Output	
Outseal PLC	176
Gambar 157. Ikon Aplikasi Outseal Studio	176
Gambar 158. Mengkoneksikan Outseal PLC dengan	
Leptop/Komputer (PC)	177
Gambar 159. Outseal PLC Terkoneksi dengan Leptop/Komputer	•
(PC)	177
Gambar 160. Settingan Hardware Outseal PLC	178
Gambar 161. Cara Memasukan Instruksi Kontak dan Input	181
Gambar 162. Memasukan Variabel Input (S) pada Instruksi	

Kontak	181
Gambar 163. Cara Memasukan Instruksi Output	182
Gambar 164. Memasukan Variabel Output (R) pada Instruksi	
Output	183
Gambar 165. Proses Pengecekan Program	183
Gambar 166. Masuk dalam Menu Simulasi dan Tombol Tidak	
Ditekan	184
Gambar 167. Kondisi Input Ditekan	184
Gambar 168.Proses Penguploatan Program Berhasil	185
Gambar 169. Rangkaian DOL	186
Gambar 170. Rangkaian Kontrol DOL Motor 3 Fasa dengan	
Outseal PLC	188
Gambar 171. Rangkaian Daya Sistem Kontrol DOL Motor 3	
Fasa	189
Gambar 172. Program Sistem Kontrol DOL Motor 3 Fasa	
Outseal PLC	190
Gambar 173. Memasukan Intruksi dan Variabel Kontak Sistem	
Kontrol DOL	192
Gambar 174. Memasukan Instruksi dan Variabel Output	193
Gambar 175. Hasil Pengecekan Program	194
Gambar 176.Kondisi Input Tidak Ditekan	195
Gambar 177. Kondisi S1 Ditekan Sesaat	195
Gambar 178. Kondisi S2 Ditekan Sesaat	195
Gambar 179. Rangkaian Pengontrolan Arah Putaran Motor	197
Gambar 180. Konsep Dasar Membalik Arah Putaran Motor	
Induksi 3 Fasa	199
Gambar 181. Rangkaian Instalasi ke PLC	200
Gambar 182. Rangkaian Tenaga Motor	201
Gambar 183. Program Sistem Kontrol Interlocking Motor 3	
Fasa Outseal PLC	202
Gambar 184. Memasukan Intruksi dan Variabel Kontak Sistem	
Interlocking	204
Gambar 185. Memasukan Instruksi dan Variabel Output	204
Gambar 186. Hasil Pengecekan Program	205
Gambar 187. Program Dalam Mode Simulasi dengan Keadaan	
Normal	206
Gambar 188. Kondisi S1 Ditekan Sesaat	207
Gambar 189. Kondisi S2 Ditekan Sesaat	207

xvi

Gambar 190.	Kondisi S3 Ditekan Sesaat	207
Gambar 191.	Rangkaian Kontrol Start Bintang Segitiga	210
Gambar 192.	Hubungan Bintang dan Segitiga	212
Gambar 193.	Rangkaian Instalasi PLC Sistem Kontrol Bintang	
	Segitiga	214
Gambar 194.	Rangkaian Instalasi Tenaga Sistem Kontrol Bintan	ıg
	Segitiga	214
Gambar 195.	Program Outseal PLC sistem Kontrol Bintang	
	Segitiga	215
Gambar 196.	Memasukan Intruksi dan Variabel Kontak Sistem	
	Kontrok Motor Bintang Segitiga	218
Gambar 197.	Memasukan Instruksi dan Variabel Output	219
Gambar 198.	Hasil Pengecekan Program	219
Gambar 199.	Program Dalam Mode Simulasi dengan Keadaan	
	Normal	220
Gambar 200.	Kondisi S1 Ditekan Sesaat	220
Gambar 201.	Kondisi S2 Ditekan Sesaat	220
Gambar 202.	Kondisi S3 Ditekan Sesaat	221
Gambar 203.	Rangkaian Kontrol DOL Motor 3 Fasa dengan	
	Outseal PLC	224
Gambar 204.	Rangkaian Daya Sistem Kontrol DOL Motor 3	
	Fasa	224
Gambar 205.	Rangkaian Komunikasi HMI dengan Outseal	225
Gambar 206.	Program PLC	225
Gambar 207.	Settingan PLC Berkomunikasi Dengan HMI	
	Waintek	225
Gambar 208.	Settingan Ip Address HMI Waintek dengan	
	PC/Leptop	226
Gambar 209.	Menu Utility Manager	227
Gambar 210.	Setting HMI	227
Gambar 211.	Setting Device HMI	228
Gambar 212.	Settingan Komunikasi HMI dengan Device	
	(Outseal PLC Shield)	228
Gambar 213.	Menu Desain HMI Waintek	229
Gambar 214.	Settingan Set Bit Untuk Tombol ON Pada HMI	
	Waintek	230
Gambar 215.	Settingan Set Bit Untuk Tombol OFF Pada HMI	
	Waintek	230
	xvii	
Risfendra	Otomasi Industri de	ngan

Risfendra HerlinSetyawan

Gambar 216. Settingan Bit Lamp Sebagia Output Di Menu HMI		
Waintek	231	
Gambar 217. Hasil Awal Program Dasar Set Bit dan Bit Lamp	232	
Gambar 218. Membuat Teks Di Menu HMI Waintek	233	
Gambar 219. Hasil Akhir Program Menu HMI Waintek	233	
Gambar 220. Menu Transfer Program Dari PC Ke HMI	234	
Gambar 201. Program Sukses Dikirim	235	

DAFTAR TABEL

Tabel 1. Daftar Frekuensi I.1	28
Tabel 2. Notasi Variabel	34
Tabel 3. Instruksi Normaly Open (NO)	40
Tabel 4. Instruksi Normaly Close (NC)	41
Tabel 5. Instruksi Output	43
Tabel 6. Instruksi Output-Not	43
Tabel 7. Instruksi Output-Lactch	44
Tabel 8. Instruksi Output-Unlutch	45
Tabel 9. Instruksi Flip On Rising	45
Tabel 10. Instruksi Flip On Filling (FOF)	46
Tabel 11. Data yang Digunakan TON	48
Tabel 12. Penggunaan Status Bit pada TON	49
Tabel 13. Status Instruksi Timer Off Delay (TOF)	52
Tabel 14. Status dan Data pada Counter Up (CTU)	53
Tabel 15. Penggunaan Status Bit pada Counter Up (CTU)	53
Tabel 16. Status dan Data pada Counter Down (CTD)	55
Tabel 17. Penggunaan Status Bit pada Counter Down (CTD)	55
Tabel 18. Penggunaan Instruksi Reset	56
Tabel 19. Instruksi Perbandingan	57
Tabel 20. Instruksi Aritmatik	62
Tabel 21. Instruksi Logika	67
Tabel 22. Urutan Data PID	72
Tabel 23. Pemetaan Data Instruksi PID	73
Tabel 24. Permasalahan pada Trainer dan Penanggulanganya	94
Tabel 25. Kode Fungsi	101
Tabel 26. Contoh Data Request Dari Master	103
Tabel 27. Contoh Data Respon Dari Slave	104
Tabel 28. Peta Alamat Modbus Outseal PLC Sebagai Slave	106
Tabel 29. Instruksi Modbus RTU Outseal PLC Sebagai Master	108
Tabel 30. Peta Alamat Modbus Outseal PLC	108
Tabel 31. Instruksi MF1	109
Tabel 32. Instruksi MF2	113
Tabel 33. Instruksi MF3	117
Tabel 34. Instruksi MF4	120
Tabel 35. Instruksi MF5	123

xix

Tabel 36. Instruksi MF5	125
Tabel 37. Hubungan Modbus RTU HMI Waintek MT8071Ip	132
Tabel 38. Penjelasan Menu Setting Bit Lamp	145
Tabel 39. Penjelasan Menu Setting Word Lamp	147
Tabel 40. Penjelasan Setting Set Bit	151
Tabel 41. Penjelasan Setting Set Word	153
Tabel 42. Settingan switch toggle	152
Tabel 43. Menu settingan numeric	161
Tabel 44. Penjelasan Setting Bar Grap	163
Tabel 45. Penjelasan Setting Outline	164
Tabel 46. Penjelasan Stting Range	164
Tabel 47. Penjelsana Setting Meter Display	167
Tabel 48. Penjelasan Stting Outline	169
Tabel 49. Penjelasan Setting Limit	170
Tabel 50. Rekap IO (Input dan Output) Sistem Kontrol DOL Image: Control DOL	176
Tabel 51. Keterangan Fitur Hardware	179
Tabel 52. Data Variabel Pada Kontak	181
Tabel 53. Variabel Instruksi Output	182
Tabel 54. Rekap IO (Input dan Output) Sistem Kontrol DOL Image: Control DOL	190
Tabel 55. Rekap IO (Input dan Output) Sistem Kontrol Motor	
Dua Arah Putaran	202
Tabel 56. Penjelasan Percobaan	208
Tabel 57. Rekap IO (Input dan Output) Sistem Start Bintang	
Segitiga	215
Tabel 58. Penjelasan Percobaan	221

Risfendra HerlinSetyawan XX

BAB I PENGENALAN OUTSEAL PLC SHIELD

Pengertian PLC menurut National Electrical Manufacturer Assosiation (NEMA) merupakan perangkat elektronik yang bekerja secara digital yang *"Programmable"* Memory" menggunakan untuk penyimpanan intruksi internal guna menerapkan fungsifungsi khusus seperti logic, sequencing, pengukuran waktu, penghitungan dasn aritmetik, untuk mengontrol modul-modul input/output secara analog atau digital, berbagai jenis mesin atau proses tertentu (Suyanto & Yulistyawan, 2007). Maka dapat disimpulkan bahwa Programmable Logic Controller (PLC) yang berfungsi sebagai pengendali yang perilakunya dapat disesuaikan dengan kebutuhan pengguna, serta penyusunan program kontrolnva berdasarkan pada suatu rangkaian kelistrikan yang diaplikasikan kedalam pernyataan logika (logic).

Umumnya pengubahan/pemrograman kontrol logika untuk PLC tersebut dilakukan oleh sebuah perangkat lunak yang berjalan di komputer (PC). Bagian utama dari sebuah PLC adalah input, controller dan output. Perangkat yang akan dikontrol (misal: relay, motor, lampu dan lain-lain) terhubung dengan bagian output PLC dan referensi yang digunakan untuk mengontrol logika output tersebut bisa berasal dari logika input atau logika lain di dalam memori PLC seperti timer, counter dan sebagainya (Bakhtiar, 2019).

A. Outseal PLC Shield

Outseal PLC adalah sebuah teknologi otomasi karya anak bangsa. Untuk merancang kontrol logika

1

Risfendra Herlin Setyawan

pada *outseal* PLC dibutuhkan perangkat lunak yang bernama *outsea* studio yang juga merupakan produk dari outseal. *Outseal* studio dijalankan di PC dalam bentuk visual programming menggunakan ladder diagram (diagram tangga). Diagram tangga tersebut merupakan sebuah hasil rancangan kontrol logika yang selanjutnya akan dikirim melalui kabel USB untuk ditanam di dalam hardware *outseal* PLC secara permanen (lihat gambar 1). Selanjutnya, kabel USB bisa dilepas dan *outseal* PLC tersebut dapat menjalankan hasil rancangan kontrol logika tersebut secara mandiri (tidak harus terhubung dengan komputer). Keuntungan menggunakan *outseal* PLC adalah:

- 1. Sudah layak digunakan untuk industri karena beberapa alasan diantaranya adalah:
 - a. Mampu bekerja pada tegangan listrik 24V (standard Industri)
 - b. Tahan terhadap ESD (*Electro Static Discharger*) yakni pelepasan arus listrik statik dari suatu benda ke benda lainya (Syeh Aji Ana & Tatang, 2017)
 - c. Isolated Input
 - d. Analog input bisa membaca arus listrik 0-20 mA dan terdapat resettable fuse
- 2. Skema elektronik terbuka untuk umum sehingga siapapun dapat melihat, mempelajari, membuat sendiri hingga mengembangkannya.
- 3. Perangkat lunak untuk pemrograman diagram tangga diberikan secara gratis, memakai bahasa

Otomsai Industri dengan Risfendra Herlin Setyawan Arduino Outseal PLC Shiel

indonesia sebagai bahasa utama dan mudah dioperasikan.

4. Terdapat forum resmi di media sosial facebook untuk belajar dan berdiskusi.

Gambar 1. Mengenal Outseal PLC Shield V.2

B. Catu Daya Outseal PLC Shield V.2

PLC *shield* versi 2, besarnya catu daya dari *shield* ini tergantung dari arduino yang digunakan. Umumnya arduino nano clone (buatan Tiongkok menggunakan IC regulator dengan seri AMS1117 5.0. Regulator ini berjenis linea regulator yang berfungsi menurunkan tegangan *input* menjadi 5V. Semakin besa penurunan tegangannya maka panas yang ditimbulkan juga akan semakin besar sehingga disarankan agar tegangan input menuju regulator ini hanya berselisih sedikit dengan 5V. Umumnya tangan

Risfendra Herlin Setyawan Otomsai Industri dengan Arduino Outseal PLC Shiel

3

listrik input yang digunakan adalah 6 hingga 9 volt. Walaupun pada datasheet linear regulatornya mampu diberikan *input* hingga 12 volt, namun untuk pemakaian jangka panjang disarankan agar tegangan *input* yang diberikan antara 6 sampai 9 volt saja untuk menghindari panas yang ditimbulkan oleh regulator tersebut.

Perlu diketahui juga bahwa *outseal* PLC dapat berjalan walau hanya mendapatkan tenaga dari kabel USB saja. Ini artinya bahwa saat *outseal* PLC tertancap pada komputer melalui kabel USB maka PLC ini sudah bisa berjalan tanpa memerlukan catu daya luar. Didalam *outseal* PLC sudah terdapat sebuah schottky dioda yang berfungsi sebagai pemilih atu daya otomatis sehingga apabila kabel USB dan catu daya luar tertancap bersama pada PLC, maka PLC akan otomatis memilih sumber daya dari catu daya eksternal. Catu daya yang diperlukan untuk memberi tenaga pada *outseal* PLC dapat dilakukan melalui terminal blok (berada dalam lingkaran merah) seperti terlihat pada gambar 2.

	4	
Risfendra		Otomsai Industri dengan
Herlin Setyawan		Arduino Outseal PLC Shiel

Gambar 2. Pin *Power Supply Outseal* PLC *Shield* V.2 Rentang voltase *power supply* yang diperbolehkan untuk *outseal* PLC *shield* V.2 adalah dari 6 s.d 9 VDC sedangkan arus listrik minimum adalah sebesar 2A. Data tersebut dapat dijadikan acuan dalam membeli adaptor atau SMPS (*switched-mode power supply*)

C. Input Outseal PLC Shield

Pada PLC *outseal* V.2 terdapat dua jenis *input* yakni input digital dan input analog. Digital *input* dari *outseal* PLC ini berjenis " sinking " (membuang energi) yang artinya adalah *input* yang menuju shield ini harus berupa tegangan listrik yang besarnya adalah 5 hingga 30V terhadap ground. *Input* pada *outseal* PLC adalah berjenis "sinking" yang artinya perangkat input pada *outseal* PLC bertindak sebagai sebuah saluran pembuangan tenaga listrik dengan kata lain input pada *outseal* PLC akan

Risfendra Herlin Setyawan Otomsai Industri dengan Arduino Outseal PLC Shiel

5

mendeteksi tegangan yang masuk melalui pin-pin inputnya. Apabila tegangan yang masuk lebih dari 5V maka logika PLC menyatakan *true* dengan ditandai lampu led indikator yang menyala.

Gambar 4. Penyambungan Input Outseal PLC Shield V.2

Untuk *input* analog pada *outseal* PLC mempunyai dua jalur analog *input* dimana kedua jalur ini dapat membaca tegangan listrik dari 0 s.d 5

VDC maupun arus listrik dari 0 s.d 20 mA. Dalam satu jalur hanya bisa membaca voltase 0 s.d 5 VDC dan jalur yang satunya bisa membaca arus listrik 0 s.d 20 mA.

Gambar 5. Pin Input Analog Outseal PLC Shield

Gambar 6. Cara Mengkalibrasi Shunt Resistor

Membacaan arus listrik 0-20 mA dilakukan outseal PLC dengan cara menambahkan shunt resistor untuk mengubah arus listrik menjadi tegangan listrik. Besarnya shunt resistor ini harus sesuai dengan batas pembacaan voltase yang dapat dilakukan oleh mikrokontroler yakni 0 s.d 5 VDC sehingga shunt resistor ini harus di seting tepat 250

Risfendra Herlin Setyawan Arduino Outseal PLC Shiel ohm melalui variable resistor yang berwarna biru. *Outseal* sudah mengatur nilai *shunt* resistor ini sebesar 250 ohm pada *hardware* yang dijual sehingga jika terdapat ketidak sengajaan yang menyebabkan nilai resistor ini berubah, maka shunt resistor ini dapat diatur kembali melalui pemutaran variable resistor. Cara untuk mengatur dengan menggunakan ohm meter seperti yang diperagakan pada gambar 6.

D. Output Outseal PLC Shield

Bagian *output outseal* hanya memiliki satu jenis saja yakni *output* digital dengan jenis *output* PLC *shield "High Side Switch*" dimana *switch* ini digunakan untuk memutus atau menyambung arus listrik menuju beban sehingga *output* ini tidak memerlukan ground. *Output* ini dapat disambungkan langsung ke coil relay atau dapat juga disambungkan ke modul relay board.

	8	
Risfendra		Otomsai Industri dengan
Herlin Setyawan		Arduino Outseal PLC Shiel

Gambar 7. Penyambungan PLC dengan Relay Board Output pada outseal PLC berjenis "High Side Switch" yang artinya kutub positif berposisi sebagai common/ground. IC ULN2803 dipakai dalam papan elektronik outseal sebagai driver output. Apabila sinyal PLC yang akan diteruskan adalah true maka beban yang terhubung antara pin POWER (POW) dan pin output akan teraliri listrik sehingga output jenis ini sangat cocok untuk dihubungkan dengan perangkat yang logikanya active low seperti sebuah relay board module. Jumper output pada board berfungsi untuk menentukan sumber listrik yang akan diberikan melalui pin POWER (POW).

Risfendra Herlin Setyawan

Otomsai Industri dengan Arduino Outseal PLC Shiel

9

Apabila sebuah relay board module dihubungkan dengan pin-pin output outseal PLC maka jumper harus diatur agar relay board module tersebut mendapatkan listrik pada 5V pin signal. Pengkabelannya dapat dilihat pada gambar 7. PLC Apabila dikehendaki outseal terhubung langsung dengan relay maka POWER (POW) harus diatur agar relay tersebut mendapatkan listrik sesuai dengan sumber ekternal yang digunakan pada pin EXT dan harus sesuai dengan voltase relay yang dipasang. Untuk lebih jelasnva cara penyambunganya dapat dilihat pada gambar 8. Apabila ingin menghubungkan sebuah relay yang didalamnya terdapat led indikator perlu diperhatikan hubungannya dengan pin output PLC karena jika terbalik maka relay masih bisa berjalan tetapi led indikator tidak menyala.

Gambar 8. Penyambungan PLC dengan Relay 24 VDC Langsung

E. Penambahan Modul Input/Output

Modul adalah perangkat tambahan yang dapat bekerja dengan outseal PLC melalui jalur komunikasi TWI (two wire interface). Modul tersebut bisa berupa RTC (*Real Time Clock*) atau modul *input/output* Outseal PLC lain yang akan difungsikan sebagai penambah jumlah I/O baik digital atau analog. Pin untuk menghubungkan modul mempunyai keterangan SDA dan SCL. TWI adalah sebuah protokol bus data yang bisa menghubungkan lebih dari dua perangkat. Apabila modul yang terpasang lebih dari satu maka modul tersebut bisa dipasang secara paralel maupun secara seri sesuai dengan gambar 9 (a) dan (b).

Gambar 9. Penyambungan Modul *Input/Output* (a) Modul di Serikan, (b) Modul di Paralelkan

